Исследование механизма реакции $NO + H_2$ на монокристалле Pd(110) методом DFT

А. А. Брылякова

Изучение каталитического восстановления оксида азота водородом на палладии имеет большое практическое значение, связанное с защитой окружающей среды, поскольку Pd входит в состав нейтрализаторов, очищающих выхлопные газы от примесей NO, N₂O, NH₃, CO и углеводородов. К настоящему времени для понимания механизма действия реальных нанесенных металлических катализаторов активно проводились экспериментальные исследования реакции NO + H₂ на модельных системах (монокристаллы Pd) [1-3], однако теоретическому исследованию восстановления оксида азота водородом на палладии до сих пор уделялось мало внимания [4]. Экспериментальное изучение механизма реакции NO + H₂ (D₂) на грани Pd(110), предоставляющей разнообразный набор возможных центров для адсорбции, было проведено группой низкотемпературного катализа металлами ИК СО РАН с помощью метода ТПР в сочетании с техникой молекулярных пучков [3]. Установлено, что реакция протекает по механизму Лэнгмюра-Хиншельвуда с выделением продуктов реакции N₂, N₂O, NH₃ и H₂O при условии образования высокой концентрации свободных активных центров, необходимых для диссоциативной адсорбции NO и H₂. Предложенный механизм реакции записывается в виде следующей последовательности стадий [2]:

- 1. $NO + * \leftrightarrow NO_{a\pi c}$
- 2. $H_2 + 2^* \leftrightarrow 2 H_{anc}$
- 3. $NO_{adc} + * \rightarrow N_{adc} + O_{adc}$
- 4. $O_{anc} + 2 H_{anc} \rightarrow H_2O + 3*$
- 5. $OH_{adc} + OH_{adc} \rightarrow H_2O_{adc} + O_{adc}$
- 6. $N_{adc} + 3 H_{adc} \leftrightarrow [NH_{adc}]_x \rightarrow NH_3 + 4*$
- 7. $N_{adc} + N_{adc} \rightarrow N_2 + 2*$
- 8. $NO_{anc} + N_{anc} \rightarrow N_2O + 2*$

Целью настоящего проекта является квантово-химическое изучение методами теории функционала плотности (DFT, CI-NEB) механизма реакции NO + H_2 на грани Pd(110). До настоящего времени подобных теоретических исследований для грани Pd(110) не проводилось.

В ходе выполнения работы предполагается определить маршрут диссоциации $NO_{aдc}$ на чистой поверхности грани Pd(110) (стадия 3), последовательно рассмотреть маршруты диссоциации NO в присутствии диссоциативно адсорбированного водорода ($NO_{aдc} + H_{aдc} \rightarrow N_{aдc} + O_{aдc} + H_{aдc}$; $NO_{adc} + H_{adc} \rightarrow NH_{adc} + O_{adc}$; $NO_{adc} + H_{adc} \rightarrow NH_{adc} + OH_{adc}$). Далее планируется моделирование элементарных стадий образования молекул N_2 , N_2O , NH_3 и H_2O согласно вышеприведенному механизму.

Для проведения расчёта электронной плотности чистой и покрытой адсорбированными частицами каталитически активной поверхности грани Pd(110) и вычисления на этой основе геометрической структуры и энергии связи атомов и молекул предполагается использовать программный пакет PWSCF. Определение структуры переходных состояний и активационных барьеров будет проведено с помощью метода CI-NEB (climbing image nudged elastic band). Вычислительные

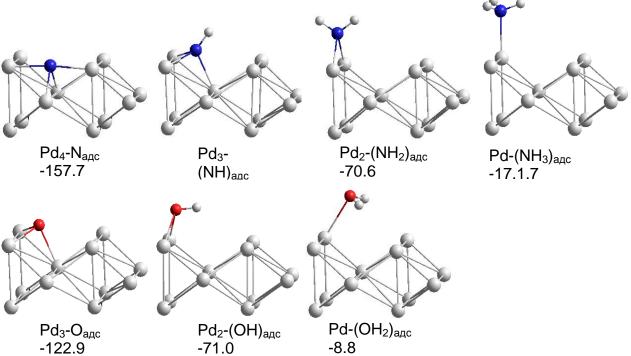
ресурсы для выполнения проекта предоставлены Сибирским Суперкомпьютерным Центром ИВМиМГ CO РАН.

Полученные данные позволят интерпретировать и дополнить результаты экспериментального изучения реакции $NO + H_2$ на грани Pd(110).

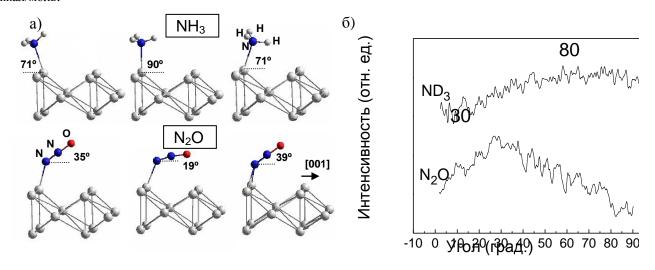
Имеющийся научный задел. Методом DFT рассчитаны геометрия и энергия связи реагентов, продуктов и предполагаемых интермедиатов реакции NO + H_2 в зависимости от координационного окружения атомами металла: атомов $H_{a,c}$, $O_{a,c}$, $N_{a,c}$; $OH_{a,c}$ -, $NH_{a,c}$ -, $NH_{2a,c}$ - групп; молекул $H_2O_{a,c}$, $NH_{3a,c}$, $N_{2a,c}$ и $N_2O_{a,c}$ (степень покрытия $\theta = 0.25$ ML). Найдены наиболее энергетически выгодные формы адсорбции.

Рассчитана последовательность изменения типа координации атомов $N_{\rm agc}$ и $O_{\rm agc}$ в структуре активного центра на грани Pd(110) при образовании молекул NH_3 и H_2O , соответственно, Puc.1. Таким образом, каталитическое восстановление оксида азота водородом на грани Pd(110) в начальной стадии включает диссоциативную адсорбцию NO и водорода с образованием многосвязанных форм адсорбции: Pd_4 - $N_{\rm agc}$, Pd_3 - $O_{\rm agc}$ и Pd_3 - $H_{\rm agc}$. Реакция образования гидроксильной $OH_{\rm agc}$ -группы сопровождается переходом атомов кислорода из 3-х связанного состояния в 2-х связанное состояние, реакция образования $NH_{\rm 2agc}$ и $NH_{\rm agc}$ -групп — переходом атомов азота в 3-х и 2-х связанные состояния, соответственно. Стадии образования продуктов реакции — молекул $H_2O_{\rm agc}$ и $NH_{\rm 3agc}$ — характеризуются последующим переходом атомов кислорода и азота из 2-х связанного состояния в 1-связанное состояние, с освобождением центров, активных в диссоциативной адсорбции NO и H_2 .

Рассчитанные углы наклона относительно поверхности грани Pd(110) молекул $N_2O_{aдc}$ и $NH_{3aдc}$, ориентированных в направлении [001], согласуются с экспериментально полученными методом ТПР угловыми зависимостями образования продуктов N_2O и NH_3 при стационарном протекании реакции $NO + H_2/Pd(110)$, Puc. 2.


Методом СІ-NEB рассчитан путь диссоциации $NO_{a,c}$ на чистой грани Pd(110), найдена геометрическая структура переходного состояния (стадия 3), Рис. 3. В качестве начального состояния выбрана форма адсорбции $NO_{a,c}$ с наибольшей энергией связи (short-bridge). Энергия активации реакции составляет 68.0 ккал/моль.

^[1] Wolf C.A., Nieuwenhuys B.E. The NO + H₂ reaction over Pd(111) // Surf. Sci., 2000, v. 469, p. 196.


^[2] Cobden et al. Non-linear process on Pt, Rh, Pd, Ir and Ru surfaces during the NO-hydrogen reactions // J. Mol. Cat., 2000, v. 158, p. 115.

^[3] Саметова (Брылякова) А.А. Взаимное влияние и реакционная способность адсорбированных атомов и молекул в реакциях $CO + O_2$, $H_2 + O_2$, $NO + H_2$ на монокристаллах Pd(110) и Pt(111): Дис. ... канд. хим. наук // Новосибирск, Институт катализа, 2007.

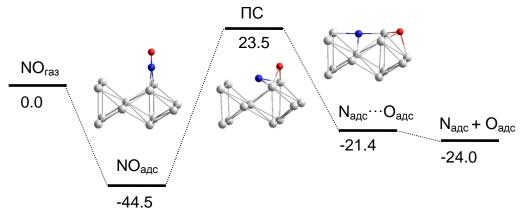

^[4] Li-yuan Huai et al. NO dissociation and reduction by H_2 on Pd(111): A first-principles study // J. Cat., 2015, v. 322, p.73.

Рис. 1. Последовательность наиболее энергетически выгодных структур интермедиатов в ходе образования молекул NH_3 и H_2O . Также на рисунке приведены энергии связи адсорбированных частиц с поверхностью грани Pd(110), ккал/моль.

Рис. 2. а) Рассчитанные структуры адсорбции молекул $N_2O_{\text{адс}}$ и $NH_{3\text{адс}}$, ориентированных в направлении [001]. Энергия связи молекул $NH_{3\text{адс}} - 17.1$ ккал/моль для всех структур; молекул $N_2O_{\text{адс}} - 6.7$, 6.0, 3.7 ккал/моль (слева направо). б) Характер угловой зависимости интенсивности выделения продуктов реакции – молекул N_2O и NH_3 , в условиях стационарного протекания реакции $^{15}NO + D_2$ на грани Pd(110) при T = 530 К [3].

Рис. 3. Диаграмма потенциальной энергии и геометрические параметры для реакции диссоциации NO на грани Pd(110), рассчитанные методом CI-NEB.