КРАТКАЯ АННОТАЦИЯ РАБОТЫ

«*Ex-situ* исследование методом РФЭС redox процессов на поверхности катализатора низкотемпературного окисления СО Pd/CeO₂»

Гуляев Роман Владимирович

Введение

Комплексное физико-химическое исследование процессов низкотемпературного окисления (HTO) представляет большой интерес как с точки зрения накопления фундаментальных знаний для понимания механизмов каталитического окисления, так и последующего преломления этих знаний на прикладные задачи экологической очистки вредных газов. Одними из самых перспективных катализаторов НТО являются палладиевые катализаторы, нанесенные на носители, в состав которых входит оксид церия. На данный момент времени наиболее острыми проблемами в изучении этих катализаторов являются установление природы активных центров, а также исследование RedOx процессов, протекающих на поверхности палладий-церийоксидных катализаторов. Наиболее ценную информацию в этом отношении может дать применение метода РФЭС при исследовании катализаторов НТО на различных этапах воздействия как реакционной смеси СО +О₂, так и регентов О₂, СО. Однако специфика использования метода РФЭС предполагает возможное изменение состояния поверхности катализаторов, приготовленных обычными методами "растворной" химии, при их переносе через атмосферу в камеру спектрометра (режим "реактор-спектрометр"). В связи с этим при применении режима "реакторспектрометр" имеет место проблема соответствия результатов кинетических исследований активности, полученных в кинетической установке, и электронного состояния поверхности исследуемых катализаторов, определяемых в электронном спектрометре в условиях вакуума.

Цели, задачи и предполагаемые подходы к решению задач, приводимые ниже взяты из заявки на участие в конкурсе МПП 2009 без изменений.

Цель работы

Целью настоящей работы является получение в режиме *ex-situ* комплексной информации о связи электронных состояний активного компонента и носителя с активностью катализатора, что имеет первостепенное значение при построении моделей активных центров и каталитической схемы процессов HTO.

Основные задачи

I. Исследование 5% Pd/CeO₂ катализатора НТО методом РФЭС при различных температурах восстановления в СО и последующего реокисления в кислороде. Регистрация фотоэлектронных спектров палладия, церия и кислорода для установления электронных состояний компонентов поверхности в ходе RedOx обработок.

II. Приготовление модельного катализатора Pd/CeO₂ методом вакуумного напыления церия и палладия на инертную подложку и применения плазменных обработок в O₂. Исследование данного модельного катализатора на различных этапах восстановления в CO и водороде и последующего реокисления в O₂.

III. Сопоставление *ex-situ* данных, полученных для модельного и "растворного" катализатора с результатами предыдущих исследований, проводимых в режиме *"реактор-спектрометр"*.

Предполагаемые подходы к решению задач (этапы исследований).

I. Этап исследования ''растворного'' катализатора 5% Pd/CeO₂, приготовленного методом пропитки, включает в себя нанесение порошка катализатора на мелкую никелевую сетку с применением спиртовой суспензии. Данный способ позволяет организовать

равномерное распределение катализатора, никелевая сетка позволяет производить нагревание до температур порядка 800°С. Исследования будут проведены step-by-step восстановлением в СО при различных температурах с промежуточной откачкой газа и регистрацией РФЭ - спектров. При достижении температуры 230° С (температура начала взаимодействия кислорода CeO₂ c CO), катализатор будет подвергнут аналогичному step-by-step реокислению в кислороде до конечной температуры 230° С с фиксацией РФЭ-спектров.

II. Этап синтеза модельного катализатора включает в себя последовательное вакуумное напыление двух металлов – церия и палладия на окисленную алюминиевую пленку с последующим применением либо плазменной обработки в кислороде для формирования контакта Pd-CeO₂, либо, наоборот, нагревание в вакууме для сплавления напыленных металлов и последующая обработка в кислороде. Оба подхода должны дать модельный катализатор, по параметрам близкий к катализаторам, приготовленным методом пропитки. Далее с полученным модельным катализатором планируется провести эксперименты, аналогичные проведенным с пропиточным катализатором. Таким образом, будут получены модельные катализаторы, с помощью которых возможно детальное изучение всех особенностей протекания каталитической реакции окисления СО. Можно полагать, что полученная таким образом информация может быть распространена на действие реальных "растворных" катализаторов.

III. Сопоставление данных, полученных для модельного и "растворного" катализаторов, исследованных *ex-situ* позволит понять применимость методов получения модельных катализаторов для исследования "растворных". Сопоставление подхода *ex-situ* с проведенными ранее исследованиями в режиме *"реактор – спектрометр"* позволит получить общую картину механизмов НТО.

Изменения, внесенные в проект в процессе его выполнения.

Этап №II – синтеза катализатора Pd/CeO₂ в режиме *in-situ* непосредственно в камере обработки спектрометра VG ESCALAB HP подвергся изменению. По причине временного отсутствия возможности реализовать методику вакуумного напыления металлических церия и палладия на инертную подложку, катализатор был синтезирован из смеси нитратов церия и палладия: Pd(NO₃)₂ + Ce(NO₃)₃ прокаливанием в кислороде.

Полученные результаты (степень выполнения проекта)

I. Этап исследования "растворного" катализатора

По первому этапу проекта были проведены эксперименты по исследованию в режиме *ex-situ* катализатора 5%Pd/CeO₂, приготовленного методом пропитки. Подход к исследованию состоял в нанесении приготовленного катализатора на никелевую сетку для реализации возможности нагрева. Далее образец был помещен в камеру предварительной обработки спектрометра VG ESCALAB HP, где был вакуумирован. Дальнейшие манипуляции состояли в прогреве образца в атмосфере кислорода при давлении P = 1 торр до температуры $T = 450^{\circ}$ C и охлаждении до комнатной температуры так же в кислороде. Данные действия были аналогичны тренировке образцов катализаторов в кислороде перед проведением кинетических экспериментов в каталитическом реакторе. Т.о. была получена чистая каталитическая поверхность, пригодная для проведения исследований методом $P\Phi$ ЭС с исключением влияния постороннего воздействия (перенос через атмосферу от реактора к спектрометру).

Эксперимент состоял в обработке подготовленного катализатора как в СО, так и в кислороде при различных температурах с промежуточной откачкой и фиксацией РФЭ – спектров поверхности. Детальные параметры эксперимента приведены в табл. 1.

№ спектра	Операция	Параметры
1	Тренировка в	О ₂ (Р = 1 торр)
	кислороде	Нагр. до $T = 450^{\circ}$ С, охл. до RT, откачка
2		СО (Р = 1 торр)
		RT выдержка 30 мин, откачка
3		СО (Р = 1 торр)
	Восстановление в СО	Нагр. до $T = 50^{\circ}$ С, выдержка 30 мин, охл. до RT, откачка
4		СО (Р = 1 торр)
		Нагр. до T = 120°C, выдержка 30 мин, охл. до RT, откачка
5		СО (Р = 1 торр)
		Нагр. до T = 230°C, выдержка 30 мин, охл. до RT, откачка
6		$O_2 (P = 1 \text{ ropp})$
		Нагр. до T = 90°C, выдержка 30 мин, охл. до RT, откачка
7	Реокисление в	О ₂ (P = 1 торр)
	кислороде	Нагр. до T = 280°C, выдержка 30 мин, охл. до RT, откачка
8		$O_2 (P = 1 \text{ ropp})$
		Нагр. до T = 450°C, выдержка 30 мин, охл. до RT, откачка
RT – комнатная температура, определяемая температурой охлаждающей воды (18±1 °C).		
Спектры РФЭС были получены после каждой из обработок путем откачки камеры обработки и		
перемещения образца в камеру анализатора спектрометра.		

Табл. 1. Параметры проведенных экспериментов.

В результате проделанных экспериментов были получены спектры РФЭС, характеризующие состояние поверхности катализатора на различных этапах восстановления в СО и реокисления в кислороде. На рис. 1. Показаны спектры линии Pd3d, для обработок, указанных в табл.1.

Рис. 1. Спектры линии Pd3d для катализатора 5%Pd/CeO₂ на различных этапах восстановления в CO и окисления в кислороде.

Летально природа состояний палладия В составе катализаторов полного низкотемпературного окисления Pd/CeO₂ была описана нами в работе [1]. Отметим, что состояние палладия с энергией связи 336,1±0,5 эВ относится в палладию в составе дву- и трехмерных кластеров. Данную форму палладия в составе катализаторов Pd/CeO₂ мы называем палладий восстановленной фазой взаимодействия (ПВФВ), чтобы подчеркнуть отсутствие наночастиц палладия и образование сильно взаимодействующих с поверхностью носителя кластеров, насчитывающих несколько палладиевых атомов. Состояние с энергией связи 337,9±0,2 соответствует палладию, растворенному в приповерхностных слоях носителя с формированием совместной палладий окисленной фазы взаимодействия Pd_xCe_{1-x}O_{2-б} (ПОФВ). Как видно, изначальное состояние катализатора представлено в основном палладий окисленной фазой взаимодействия (рис.1.1. – 337,7 эВ). Кроме того на поверхности присутствует незначительное количество двумерных кластеров палладия (рис.1.2. – 336,3 эВ). Экспозиция СО при комнатной температуре приводит к практически полному исчезновению компоненты, ответственной за двумерные кластеры. Возможно, данный эффект объясняется экранировкой кластеров адсорбированными молекулами СО. Увеличение температуры восстановления до 50°С приводит к формированию трехмерных кластеров палладия (рис.1.3. – 335,6 эВ). В то время, как палладий окисленная фаза взаимодействия остается без изменений. Возрастание температуры обработки в СО ведет к увеличению концентрации трехмерных кластеров (рис.1.4. – 335,6 эВ) и уменьшению концентрации (рис.1.4. – 337.7 эВ) фазы взаимодействия. Это свидетельствует о диффузии ионов палладия из фазы Pd_xCe_{1-x}O_{2-δ} на поверхность с их последующим восстановлением CO и формированием трехмерных кластеров. Обработка в СО при T = 230°C приводит к спеканию кластеров до металлических наночастиц (рис.1.5. – 335,4 эВ), что видно по сдвигу компоненты, ответственной за восстановленное состояние в диапазон меньших энергий связи. Однако часть ПОФВ остается в составе катализатора. Это согласуется с результатами, полученными ранее с использованием режима "реактор-спектрометр". Однако, было непонятно, связано ли наличие остаточной фазы взаимодействия с химией катализатора, или это проявление эффекта окисления восстановленного образца при переносе его через атмосферу в спектрометр. Полученные данные позволяют с уверенностью исключить факт окисления атмосферой восстановленного образца.

Изучение процесса реокисления восстановленного катализатора позволило установить обратимость окислительно-восстановительного цикла, т.к. конечное состояние представлено чистой фазой $Pd_xCe_{1-x}O_{2-\delta}$ (рис.1.8. – 337,7 эВ). Т.е. весь палладий является атомарно диспергированным в приповерхностных слоях церия, что подразумевает обратимую сегрегацию палладия из объема образца в кластеры в восстановительной среде и растворение кластеров в объеме CeO_2 в окислительной среде. Диспергирование палладия подтверждается зависимостью, приведенной на рис. 2.

Рис. 2. Зависимость поверхностной концентрации палладия от температуры и характера обработок катализатора 5% Pd/CeO $_2$

Данная зависимость представляет собой отношение интегральных интенсивностей линий Pd3d/Ce3d, с учетом соответствующих коэффициентов атомной чувствительности. Это соотношение характеризует дисперсность частиц палладия в зоне анализа РФЭС, составляющей глубину около 20 - 30Å. Видно, что обработка в СО ведет к дисперсности палладия, связанному с агрегацией в частицы. В то время, как обработка в кислороде ведет к обратимому увеличению отношения Pd3d/Ce3d , т.е. к обратному растворению частиц палладия в приповерхностных слоях носителя.

Характер диспергирование является сложным. Начальный этап про температуре $T = 90^{\circ}$ С происходит через уменьшение наночастиц до трехмерных кластеров (рис. 1.6 – 335,5 эВ). Повышение температуры реокисления до $T = 280^{\circ}$ С ведет к формированию двумерных кластеров палладия из трехмерных, что видно по сдвигу компоненты с 335,5 до 335,9 эВ (рис. 1.7) и одновременному увеличению ее интенсивности. Наиболее правдоподобным выглядит предположение о "растекании" трехмерных кластеров по поверхности носителя под воздействием окислительного окружения. Возрастание температуры обработки в кислороде до $T = 450^{\circ}$ С приводит к полному растворению двумерных кластеров в приповерхностных слоях носителя с формированием фазы $Pd_xCe_{1-x}O_{2-\delta}$.

Подводя итог, можно сказать, что с помощью данного эксперимента было доказано отсутствие сильного влияния атмосферы на восстановленный катализатор при реализации режима "реактор-спектрометр". Была показана обратимость высокоактивного комплекса 2D- $Pd_n/Pd_xCe_{1-x}O_{2-\delta}$ (где 2D- Pd_n означает двумерный кластер палладия, закрепленный на поверхности носителя, точнее - твердого раствора палладия в приповерхностных слоях носителя) во всем окислительно-восстановительном цикле. Был детально изучен процесс сегрегации палладия в восстановительной атмосфере CO из ПОФВ на поверхность катализатора и обратный процесс диспергирования палладия из металлических наночастиц в приповерхностные слои катализатора с образованием ПОФВ при воздействии кислорода. Т.о. первую часть проекта можно считать выполненной.

II. Этап синтеза модельного катализатора

Как известно, нитрат церия способен к экзотермическому разложению по схеме: $Ce(NO_3)_3*6H_2O(s) \rightarrow Ce(NO_3)_3(s) \rightarrow CeONO_3(s) \rightarrow CeO_2(s) + N_2(g) + N_2O(g) + NO(g) + Q$

Причем, разложение протекает в твердой фазе (s) с выделением газообразных побочных продуктов реакции (g), поэтому метод синтеза оксида церия путем термического разложения нитрата Ce(NO₃)₃ известен давно и хорошо себя зарекомендовал. Применяется данный метод и для синтеза церий оксидных носителей в катализе. Последующие манипуляции состоят в нанесении активного компонента различными методиками (пропитка, осаждение) и итоговом прокаливании, дающем готовый катализатор. Однако, процесс синтеза в литературе не исследован.

Смесь растворов Ce(NO₃)₃ и Pd(NO₃)₂ была нанесена на специально подготовленную подложку для закрепления и реализации возможности нагревания образца и высушена. Далее образец помещался в камеру обработки спектрометра, где производилась откачка. После этого был произведен напуск кислорода (P = 1 торр) и нагревание до T = 100°C, охлаждение до комнатной температуры, откачка кислорода и регистрация спектра РФЭС. Аналогичным образом было произведено нагревание до T = 200, 300, 400 и 450°C, с фиксацией РФЭ - спектров на каждом этапе, кроме того, РФЭ - спектры были получены для исходной смеси солей. Так же, был проведено тестовый эксперимент для смеси нитратов палладия и церия путем прокаливания в вакууме при аналогичных температурах.

Рис. 3. Стехиометрическое атомное отношение Pd/Ce на поверхности смеси Pd(NO₃)₂+Ce(NO₃)₃ в зависимости от температуры прокаливания в кислороде и вакууме (слева). Состояние палладия на поверхности после прокаливания смеси при $T = 450^{\circ}$ C в кислороде и вакууме.

Заданное отношение нитратов металлов в смеси составляло 5% Pd/100%Ce, однако как показывает РФЭС (рис. 3.) изначальная стехиометрия близка к 1:1, что подразумевает насыщение поверхности кристаллитов смеси ионами палладия. Прокаливание приводит к постепенному снижению отношения Pd/Ce, что связано с гомогенизацией ионов в объеме смеси. Необходимо отметить, что наиболее интенсивная гомогенизация (падение отношения Pd/Ce) наблюдается в области температур 200 – 400°C, увеличение температуры прокаливания в кислороде до 450°C не приводит к изменению соотноления Pd/Ce на поверхности катализатора. Это может означать окончание процесса формирования флюоритной структуры Pd_{0.05}Ce_{0.95}O₂ и установления равновесного состояния данной фазы. Итоговое состояние палладия представлено фазой взаимодействия Pd_xCe_{1-x}O_{2-δ} (337.8 эB, рис. 3) и незначительными количествами двумерных кластеров палладия (336,3 эB). Данное состояние полностью соответствует состоянию палладия на поверхности катализаторов Pd/CeO₂, приготовленных методом пропитки и исследованных нами ранее.

Прокаливание в вакууме приводит к сильному спеканию палладия в частицы оксида PdO (337.4 эВ) и металла (335,5 эВ). Это можно так же заключить из изменения стехиометрии Pd/Ce при прокаливании в вакууме смеси нитратов.

Следует отметить, что состояние церия в обоих случаях (прокаливание в кислороде и вакууме) представлено в основном ионами Ce⁴⁺ (спектры не приведены) и не отличается от состояния церия в катализаторах приготовленных методом пропитки.

Т.о. для диспергирования палладия и образования совместных сильновзаимодействующих и высокоактивных палладий-цериевых композиций необходимо прокаливание в присутствии дополнительного химического потенциала кислорода. Вероятно, NO₃ – групп для этого недостаточно вследствие сильно восстанавливающего характера ионов Ce³⁺.

Исследование процесса синтеза катализатора Pd/CeO₂ путем термического разложения было так же выполнено в Берлинском центре синхротронного излучения BESSY II, RGBL, методом абсорбции рентгеновского излучения XAS. В отличие от метода XPS, метод XAS является объемным, т.к. возбуждение и фиксация отклика исследуемой системы осуществляются через фотоны, длина пробега которых в веществе неизмеримо больше по сравнению с заряженными частицами (например, электронами). Поэтому данное исследование позволило выяснить процессы, происходящие в объеме кристаллических фаз при синтезе катализатора. Метод исследования XAS показал резкий характер разложения нитратов при T ~ 200° C.

Рис. 4. Слева спектры Се M_5 края поглощения, полученные для исходной смеси нитратов (A), и прокаленной в кислороде при T = 400°С (B), при T = 500°С (C), далее восстановленной в CO при T = 230°С (D) и реокисленной в кислороде при T = 450°С (E). Справа приведены спектры N К края поглощения для исходной смеси (1) и по ходу синтеза катализатора в кислороде при температурах 150°С (2), 200°С (3), 250°С (4), 300°С (5), 400°С (6) и 500°С (7).

Разложение осуществлялось через окисление ионов Ce^{3+} ионами NO_3^- с выделением свободного азота. По достижении температуры прокаливания в кислороде 400°С, сигнал К-края поглощения азота не фиксировался (рис. 4.), что означало завершение этапа формирования флюоритной фазы $Pd_{0.05}Ce_{0.95}O_{2-\delta}$. Однако, при повышении температуры прокаливания в кислороде до $T = 500^{\circ}C$ произошло частичное восстановление ионов Ce^{4+} до трехвалентного состояния. Последующие обработки готового катализатора в CO и кислороде, приводили к ожидаемому увеличению и уменьшению доли ионов Ce^{3+} , однако данные изменения были менее выражены. Скорее всего, флюоритная фаза $Pd_{0.05}Ce_{0.95}O_2$ без присутствия ионов Ce^{3+} и наличия анионных вакансий является неустойчивой. Высокий окислительный потенциал азота нитратных групп поддерживает данную фазу в полностью окисленном состоянии в процессе синтеза. При израсходовании нитратных групп и завершении синтеза фазы, окислительного потенциала кислорода становится недостаточно, и структура фазы начинает релаксировать с формированием ионов Ce^{3+} и кислородных вакансий даже при прокаливании в 1 торр O_2 при $T = 500^{\circ}C$. Итоговый состав фазы отвечает формуле $Pd_{0.05}Ce_{0.65}O_{2-\delta}$, где δ не должно превышать 0,1.

Принимая во внимание достижение постоянного значения поверхностной стехиометрии Pd/Ce при температуре 400°C можно выделить два основных этапа синтеза катализатора Pd/CeO₂ из смеси нитратов:

1) Синтетический этап в диапазоне температур RT – 400°С. На данном этапе происходит окисление ионов Ce³⁺ азотом нитратных групп, гомогенизация фазы, заключающаяся в перераспределении ионов палладия и церия. Причем, для окисления церия достаточно окислительного потенциала нитратных групп в то время, как для диспергирования и окисления палладия на поверхности необходимо дополнительное присутствие газообразного кислорода.

2) Релаксационный этап (400 – 500°С). При достижении данных температур катионы церия и палладия являются гомогенно и равновесно распределенными по катионной подрешетке фазы $Pd_{0.05}Ce_{0.95}O_2$, кроме того, азот нитратных групп оказывается израсходованным и происходит релаксация, состоящая в объемном восстановлении части ионов Ce^{4+} до Ce^{3+} с высвобождением части кислорода и формированием более устойчивой фазы $Pd_{0.05}Ce_{0.95}O_{2-8}$.

Т.о. в настоящей на данном этапе проекта разработана методика синтеза катализаторов НТО СО, позволяющая исследовать особенности образования активной фазы катализатора, а также изменения, происходящие на поверхности в процессе синтеза. Второй этап проекта можно так же считать завершенным.

III. Сопоставление данных, полученных для модельных и "растворного" катализаторов

Сопоставление спектральных характеристик поверхности катализаторов Pd/CeO₂ проводилось для образцов, изучаемых во всех режимах. "Реактор – спектрометр", когда катализатор обрабатывался реагентами CO и O₂ в химическом реакторе и далее переносился в спектрометр. Режим *ex-situ*, подразумевающий нанесение готового катализатора на никелевую сетку и воздействие CO и O₂ камере спектрометра с промежуточной откачкой газов и фиксацией РФЭ-спектра. Режим *in-situ*, заключающийся в синтезе катализатора непосредственно в камере обработки спектрометра из смеси нитратов и дальнейшей обработке в CO и O₂ с промежуточной фиксацией РФЭ-спектров. Сопоставления проводились для крайних точек: исходный катализатор после тренировки в кислороде при T = 450° C, катализатор, восстановленный в CO при T = 230° C, и реокисленный в O₂ при T = 450° C. Все данные спектры показаны на рис. 5.

Рис. 5. Сопоставление спектров Pd3d для катализатора 5%Pd/CeO₂ исходного тренированного в кислороде при 450°C, восстановленного в CO при 230°C и реокисленного в кислороде при 450°C по методикам а) "реактор – спектрометр" (верхний ряд), b) в режиме *ex-situ* (средний ряд) и с) для катализатора, синтезированного в режиме *in-situ* из смеси нитратов церия и палладия (нижний ряд)

Видно, что исходное состояние палладия как для катализаторов, приготовленных методами препаративной химии, так и для катализатора, синтезированного в камере спектрометра из смеси нитратов является практически идентичным. В основном это фаза ПОФВ и незначительное количество ПВФВ в виде двумерных кластеров палладия. Воздействие СО приводит во всех случаях к восстановлению большей части ПОФВ и образованию металлических наночастиц палладия. Во всех случаях часть ПОФВ остается не восстановленной, что во-первых, означает применимость как режима "реактор-спектрометр" для исследования RedOx процессов на поверхности данного катализатора. Во-

вторых, данный факт подразумевает высокую устойчивость ПОФВ, ионы палладия остаются в составе приповерхностных слоев катализатора даже при воздействии СО при T = 230°C. Втретьих, поведение катализатора, приготовленного термическим разложением смеси $Pd(NO_3)_2$ и Ce(NO₃)₃ в камере спектрометра полностью повторяет поведение катализаторов, приготовленных методом пропитки. Это позволяет сделать вывод о том, что данная очень простая и эффективная методика подходит для *in-situ* приготовления катализаторов Pd/CeO₂ по свойствам очень близких к катализаторам, которые получают с использованием традиционных методов приготовления. Реокисление катализаторов к кислороде во всех приводит обратному диспергированию палладия ИЗ наночастиц в случаях К приповерхностные слои носителя, с формированием фазы Pd_xCe_{1-x}O₂. Единственным отличием является наличие дополнительного количества ПВФВ на поверхности катализатора, обработанного в режиме "реактор-спектрометр". В целом, предложенная в работе методика синтеза катализатора является очень простой в исполнении, и на выходе дает модельный катализатор, максимально приближенный по свойствам к катализаторам, синтезируемым методом пропитки.

Предполагаемая область применения результатов и дальнейшие планы

Разработанную в работе методику можно расширить на другие катализаторы. Ценность методики состоит в достаточно высокой универсальности, связанной с большим классом составов катализаторов, подходящих для синтеза по данной методике. Кроме того, методика отличается простотой в исполнении, и высокой воспроизводимостью.

Дальнейшие планы состоят в применении разработанной методики для синтеза и исследования в режиме *in-situ* катализаторов состава $Pd/Ce_{1-x}Zr_xO_2$, для изучения роли циркония в формировании и функциях каталитических активных центров. Планируется так же изучение катализаторов на основе CeO_2 в качестве активного компонента которых выступают биметаллические активные формы: PdPt, PdAu, PdCu, и др.

Публикация результатов

По проделанной работе в настоящий момент готовятся к публикации две научные статьи. Полученные данные будут использованы для защиты кандидатской диссертации исполнителем проекта в текущем году.

¹ A.I. Boronin, E.M. Slavinskaya, I.G. Danilova, R.V. Gulyaev, Yu.I. Amosov, P.A. Kuznetsov, I.A. Polukhina, S.V. Koscheev, V.I. Zaikovskii, A.S. Noskov // Catalysis Today 144 (2009) 201–211