Влияние реакционной среды на структурные изменения в твердых растворах LaMn_{1-x}Fe_xO₃, синтезированных методом Pechini.

Герасимов Евгений Юрьевич

Введение

Твердые растворы на основе перовскита с общей формулой ABO₃ (A = Ca, Pb, La и др.; B = Al, Mn, Fe и др.) привлекают повышенный интерес исследователей благодаря своим уникальным физико-химическим свойствам. Например, материалы на основе La_{1-x}M_xFeO₃ (M = Ca, Sr, Ba) при высоких температурах имеют смешанную – ионную и электронную проводимость и могут использоваться в высокотемпературных электрохимических устройствах, таких как газовые датчики, кислород проницаемые мембраны и электроды твердотельных топливных элементов.

Твердые растворы LaMn_{1-x}Fe_xO₃ могут использоваться в качестве катализаторов для процессов газоочистки, в том числе, в реакциях полного окисления. В большинстве работ, посвященных манганитам лантана, прежде всего, уделяется внимание изучению магнитных и других физико-химических свойств, без учета особенностей структуры и микроструктуры твердых растворов. Каталитические свойства этих растворов зависят от методов синтеза и степени замещения катионов. Например, увеличение содержания катионов Ca²⁺ повышает подвижность анионов O²⁻ в системе, что положительно влияет на каталитическую активность образцов, но снижает их термическую и структурную стабильность. В случае же замещенных манганитов лантана (LaMn_{1-x}Fe_xO₃), информация о кристаллической структуре, каталитических свойствах и влиянии различных сред на структуру практически отсутствует.

Такие вопросы, как формы кислорода, условия стабильности при высоких температурах и в различных газовых средах, очень слабо освещены в литературе. Как правило, кристаллическую структуру системы LaMn_{1-x}Fe_xO₃ исследуют только методом РФА, однако данный подход не учитывает микрофазы и образование дефектов различного типа, которые могут образоваться в ходе высокотемпературных окислительных процессов и фактически являться основными центрами, участвующими в реакциях, оставаясь практически "прозрачными" для анализа методами РФА в силу размерных эффектов.

Одним из основных методов в изучении данных вопросов является просвечивающая электронная микроскопия высокого разрешения (ПЭМВР), позволяющая отслеживать и идентифицировать появление и дальнейшее изменение микрофаз, дефектов и пр.

Методы исследования.

Данные электронной микроскопии высокого разрешения (ПЭМВР) были получены на приборе JEM-2010 (Япония) с разрешением 1.4 Å. Рентгеновский микроанализ (EDX) элементного состава образцов проводился с использованием энерго-дисперсионного спектрометра EDX с Si(Li) детектором с разрешением по энергиям 130 эВ.

Исследования изменений фазового состава образцов с температурой на воздухе и в условиях вакуума (~10⁻³ мБар) проводились на станции «Прецизионная дифрактометри» Сибирского центра синхротронного и терагерцового излучения (СЦСТИ).

Рентгенограммы исследуемых образцов снимались на дифрактометре HZG 4-C (Freiberger Präzisionsmechanik, Germany) с использованием монохроматезированного (плоский графитовый монохроматор на дифрагированном пучке) Си- $k_{\dot{\alpha}}$ излучение в интервале углов 10° – 75° (2 θ) методом сканирования по точкам. Шаг сканирования – 0,05°, время накопления в точке – 3 сек.

Исследование химического состава поверхности катализаторов было проведено на фотоэлектронном спектрометре фирмы SPECS Surface Nano Analysis GmbH (Германия). Спектрометр оснащен полусферическим анализатором PHOIBOS-150-MCD-9, рентгеновским монохроматором FOCUS-500 и источником рентгеновского характеристического излучения XR-50M с двойным Al/Ag анодом. Для записи спектров использовали монохроматизированное излучение Al $K\alpha$ ($h\nu$ = 1486.74 эВ).

Полученные за отчетный период важнейшие научные результаты и их обсуждение;

В исходном состоянии образцы серии LaMn_{1-x}Fe_xO_{3±δ} представляли собой рентгенографически однофазные твердые растворы со структурой перовскита, параметры элементарных ячеек представлены в таблице. По данным РФА (Табл. 1) внутри серии LaMn_{1-x}Fe_xO_{3±δ} наблюдается морфотропный фазовый переход из ромбоэдрической в орторомбическую сингонию, что, по-видимому, связано с увеличением содержания катионов Fe в подрешетке Mn. Так, например, для образца LaMn_{0.6}Fe_{0.4}O₃ характерно сосуществование двух фаз co структурой перовскита (орторомбической И ромбоэдрической). В случае LaMn_{0.4}Fe_{0.6}O₃ ромбоэдрическая модификация перовскита не наблюдается. Из анализа микроискажений рассчитанной по формуле Вильямсона – Холла видно, что количество микроискажений в структуре возрастает с увеличением катионов Fe в подрешетке Mn.

		Параметры	Объем		$\Delta d/d$		
образец	Пр. группа	элементарной	элементарной	D (Å)			
		ячейки	ячейки V/Z (Å ³)				
исходные							
LaMn _{0.8} Fe _{0.2} O ₃	R-3c	a=b=5.514(1)	58 /1				
		c=13.310(1)	30.41				
LaMn _{0.6} Fe _{0.4} O ₃	P n m a	a=5.486(1)					
		b=7.769(1)	58.86	950	$1.8*10^{-4}$		
		c=5.524(1)					
	R-3c	a=b=5.521(1)	58.74				
		c=13.352(4)		-	1.8*10 ⁻⁴ - 7.4*10 ⁻⁴ 1.1*10 ⁻³		
LaMn _{0.4} Fe _{0.6} O ₃	P n m a	a=5.512(1)	59.54				
		b=7.805(1)		920	$7.4*10^{-4}$		
		c=5.536(1)					
LaMn _{0.2} Fe _{0.8} O ₃	P n m a	a=5.543(1)			$1.1*10^{-3}$		
		b=7.832(1)	60.30	750			
		c=5.556(1)					

Табл. 1 Параметры элементарных ячеек для твердых растворов LaMn_{1-x}Fe_xO_{3±δ}

По данным ПЭМВР (рис. 1) образцы также являлись однофазными твердыми растворами со структурой перовскита. Особенностью данной серии образцов является наличие пор на поверхности, образовавшихся в ходе удаления функциональных групп с поверхности материала. Частицы перовскита имели округло – пластинчатую форму с размерами частиц 100 нм – 1 микрон, составляющими дендритоподобные агломераты с размерами порядка нескольких микрон.

Рис. 1 Снимки ПЭМВР (а) - морфологии LaMn_{0.6}Fe_{0.4}O₃, иллюстрирующее наличие микропор на поверхности. (б) – кристаллической решетки образца LaMn_{0.8}Fe_{0.2}O₃

Методом XPS был исследован состав поверхности серии образцов LaMn_{1-x}Fe_xO_{3± δ} Относительные концентрации (атомные соотношения) элементов в приповерхностном слое катализаторов, определенные на основании данных РФЭС, представлены в таблице 2. Значения энергий связи Mn2p_{3/2}, Fe2p_{3/2}, La3d_{5/2} и O1s – приведены в таблице 3. В соответствии с данными РФЭС для исследованных катализаторов атомное соотношение [Fe]/[La] и [Mn]/[La] ниже стехиометрического соотношения. Атомное соотношение [Fe]/[Mn] также ниже стехиометрического.

Nº	Образе ц	[Fe]/[La]		[Mn]/[La]		[Fe]/[Mn]			
		синтез	XPS	синте 3	XPS	синтез	XPS	[O]/[La]	[C]/[La]
1	x=0.2	0.2	0.06	0.8	0.51	0.25	0.13	3.11	1.53
2	x=0.4	0.4	0.14	0.6	0.39	0.67	0.35	2.92	1.33
3	x=0.6	0.6	0.17	0.4	0.28	1.5	0.62	3.14	3.13
4	x=0.8	0.8	0.23	0.2	0.15	4	1.51	3.20	3.12

Таблица 2. Атомные отношения элементов в приповерхностном слое катализаторов.

Таблица 3. Значения энергий связи $Mn2p_{3/2}$, Fe $2p_{3/2}$, La $3d_{5/2}$ и O1s (эВ). Для калибровки шкалы энергий связи использована линия C1s (E_{св} = 284.80 эВ).

N⁰	Образец	Mn2p _{3/2}	Fe2p _{3/2}	La3d _{5/2}	O1s
					529.51
1	x=0.2	642.29	710.95	834.26	531.27
					533.33
					529.57
2	x=0.4	642.30	710.91	834.29	531.56
					533.62
					529.96
3	x=0.6	642.31	710.85	834.48	532.15
					533.92
					529.85
4	x=0.8	642.35	710.79	834.37	532.07
					533.75

По данным XPS в исследованных катализаторах лантан находится в состоянии La^{3+} в составе перовскита и, частично, в составе карбоната лантана $La_2(CO_3)_3$. Катионы железа присутствуют в состоянии Fe³⁺ в тетраэдрическом кислородном окружении. Катионы

марганца в исследованных катализаторах находятся в состоянии Mn^{4+} , т.к. значения энергии связи для Mn^{3+} и Mn^{4+} близки нельзя исключать присутствие марганца в состоянии Mn^{3+} . Кроме того, можно сделать вывод, что поверхность образцов довольно сильно обогащена $La_2(CO_3)_3$, а соотношение Mn/Fe не соответствует заданной стехиометрии, что предположительно связано с более высокой подвижностью катионов Mn.

В процессе каталитической реакции на структуру и микроструктуру образца воздействуют изменения температуры и среда с пониженным парциальным давлением кислорода. Поэтому, чтобы раздельно рассмотреть влияние этих факторов, образцы подвергались прокаливанию в вакууме и воздушной среде до температур 1100°С.

По данным РФА при проведении нагрева $LaMn_{1-x}Fe_xO_{3\pm\delta}$ до 900°С на воздухе не происходит существенных перемен в составе образцов: смещение пиков происходит в силу температурного расширения, появления или исчезновения новых пиков не зафиксировано. Вследствие этого можно говорить о стабильности образцов в данном температурном диапазоне.

Поскольку при прокаливании на воздухе со структурой и микроструктурой образцов не происходило видимых изменений, в дальнейших экспериментах проводилось прокаливание образцов в вакууме до температур 900°С.

Рис. 2(а) - Рентгенограммы ряда твердых растворов $LaMn_{0.2}Fe_{0.8}O_3$ при нагреве в вакууме в диапазоне температур $100^\circ - 900^\circ$ С. (б) - Параметры элементарной ячейки для $LaMn_{0.2}Fe_{0.8}O_3$ при нагреве в вакууме в диапазоне температур $100^\circ - 900^\circ$ С, рассчитанные в псевдокубическом приближении.

На рис. 2а) представлены фрагменты рентгенограмм $LaMn_{0.2}Fe_{0.8}O_{3}$, полученных in situ нагревом до 900°С. Как видно из приведенных рисунков образец являлся рентгенографически однофазным твердым раствором со структурой перовскита и имел незначительное орторомбическое искажение кубической ячейки, после нагрева при температуре порядка 700 °С перешел в ромбоэдрическую сингонию (менее выраженную). Как видно из рис. 2(б) параметр элементарной ячейки возрастает практически линейно в зависимости от температуры прокаливания, что свидетельствует о термической

стабильности данного соединения. Обработка проводилась в пр.гр. Pm3m поскольку все искажения незначительны.

Практически аналогичные изменения проходили структуры образцов происходили и для других образцов из серии $LaMn_{1-x}Fe_xO_{3\pm\delta}$, поэтому для краткости РФА остальных образцов приводиться не будут.

Рис. 3 Снимки ПЭМВР образца LaMn_{0.2}Fe_{0.8}O₃. после прокаливания в вакууме (а) – Морфология образца, иллюстрирующая наличие пор на поверхности частицы. (б) – Микроструктура образца, кружками показаны области локального упорядочения.

По данным ПЭМВР LaMn_{0.2}Fe_{0.8}O₃ также являлся однофазным твердым раствором со структурой перовскита. Морфологически образец состоял из пластинчатых частиц с размерами 100 – 500 нм (Рис. 3 а). На поверхности LaMn_{0.2}Fe_{0.8}O₃ после прокаливания в вакууме появляется локальное упорядочение структуры с образованием неких областей имеющих межплоскостные расстояния характерные для ромбоэдрической симметрии (Рис. 3 б). На микроснимках данные структуры видны, либо в виде квадратов несимметрично вставленных в кристаллическую структуру, либо в виде округлых областей с повышенным контрастом на микроснимках.

Рис. 4. Снимки ПЭМВР образца LaMn_{0.4}Fe_{0.6}O₃. (а) – Морфология образца, иллюстрирующая наличие пор на поверхности частицы. (б) – Микроструктура образца, кружками показаны области локального упорядочения.

По данным ПЭМВР LaMn_{0.4}Fe_{0.6}O₃ является однофазным твердым раствором со структурой перовскита, состоящим из пластинчатых частиц с размерами от 100 до 500 нм. Как и в предыдущем образце, на поверхности частиц зафиксированы микропоры и

мезопоры, на снимках ПЭМВР (Рис. 4 а) представленные в виде областей с переменным контрастом. Кроме того, на поверхности частиц зафиксировано локальное упорядочение кристаллической структуры образца (Рис. 4 б), заключающейся в формировании областей размерами 2-4 нм с удвоенным межплоскостным расстоянием в направлении плоскостей (101).

Рис. 5 Снимки ПЭМВР образца LaMn_{0.6}Fe_{0.4}O₃. после прокаливания в вакууме (а) – Микроструктура образца, иллюстрирующая наличие пор на поверхности частицы. (б) – Микроструктура образца с микроискажениями.

По данным ПЭМВР LaMn_{0.6}Fe_{0.4}O₃ и LaMn_{0.8}Fe_{0.2}O₃.являются однофазными твердым раствором со структурой перовскита, состоящими из пластинчатых частиц с размерами 100 – 500 нм. Для данных образцов характерно наличие пор на поверхности (Рис. 5 а), размер пор варьируется в диапазоне 1 – 50 нм. Методом ПЭМВР зафиксировано наличие областей с различным количеством микроискажений, например, на рис. 5(а) видна хорошо окристаллизованная микроструктура, а на рис. 5(б) кристаллический порядок значительно нарушается.

Участие образцов $LaMn_{1-x}Fe_xO_3$ в реакции окисления CH_4 .

Окисление метана проводилось в проточном режиме в U – образном реакторе из кварцевого стекла при температурах 350-600°С. Условия испытания: фракция катализатора - 0,25 - 0,5мм; масса катализатора - 1г, состав смеси - CH₄ - 0.9%, O₂ - 9%, N₂ - 90.1%;

По данным РФА (рис. 6) образцы из серии LaMn_{1-x}Fe_xO₃ синтезированные методом Pechini однофазны в диапазоне x = 0.2, 0.6, 0.8. Для LaMn_{0.8}Fe_{0.2}O₃ наблюдается наличие двух модификаций перовскита с орторомбической и ромбоэдрической симметрией. После участия образцов в реакции не происходит изменение фазового состава, однако происходят незначительные изменения параметров элементарных ячеек (табл. 4). Кроме того, для образцов с x=0.4 и 0.6 наблюдается увеличения параметра микроискажений.

Рис. 6 Рентгенограммы серии La $Mn_{1-x}Fe_xO_3$ после участия в реакции окисления CH₄.

		Параметры	Объем		$\Delta d/d$		
образец	Пр. группа	элементарной	элементарной	D (Å)			
		ячейки	ячейки V/Z (Å ³)				
после участия в реакции							
LaMn _{0.8} Fe _{0.2} O ₃	R-3c	a=b=5.513(1)	58 27	>1000	-		
		c=13.307(1)	38.37	/1000			
		a=5.486(1)			5.9*10 ⁻⁴		
LaMn _{0.6} Fe _{0.4} O ₃	P n m a	b=7.771(1)	58.88	860			
		c=5.525(1)					
	R-3c	a=b=5.517(1)	58 17		-		
		c=13.310(2)	38.47	-			
LaMn _{0.4} Fe _{0.6} O ₃	P n m a	a=5.502(1)	50.42		$1.1*10^{-3}$		
		b=7.812(1)	39.42	920			
		c=5.530(1)					
		a=5.540(1)			$1.1*10^{-3}$		
LaMn _{0.2} Fe _{0.8} O ₃	P n m a	b=7.829(1)	60.22	650			
		c=5.554(1)					

Табл. 4 Параметры эл. ячеек для образцов серии LaMn_{1-x}Fe_xO₃

По данным ПЭМВР образцы представляют собой хорошо окристаллизованные твердые растворы со структурой перовскита. Морфологически образцы состоят из дендритоподобных агломератов, состоящих из пластинчато – округлых частиц с размерами от 100 нм до 1 микрона. На поверхности частиц зафиксировано наличие пор с широким диапазоном размеров (от 1 до 100 нм). Поскольку образцы участвовали в реакции окисления метана, на поверхности частиц наблюдается наличие аморфного углерода (рис. 7).

Рис. 7 ПЭМВР – снимки морфологии и микроструктуры твердого раствора LaMn_{0.4}Fe_{0.6}O₃

Как и в случае прокаливания образцов в вакууме до 900°С на некоторых частицах в образце зафиксировано наличие локальных упорядочений (рис. 8), заключающееся в удвоении периода элементарной ячейки в направлениях плоскостей (100) и (101), повидимому, возникающих в результате локального упорядочения катионов Fe и Mn (рис.). Видимых изменений структуры, наличия примесей кроме вышеописанных, методом ПЭМВР не зафиксировано.

Рис. 8 ПЭМВР – снимок микроструктуры LaMn_{0.2}Fe_{0.8}O₃, также представлено FFTизображение иллюстрирующее наличие удвоения периода в направлениях плоскостей (100) и (101).

Заключение.

Комплексом физико-химических методов был исследован ряд твердых растворов LaMn_{1-x}Fe_xO₃ синтезированных методом полимерно-солевых композиций (метод Pechini). Показано, что твердые растворы являются однофазными объектами для x = 0.2, 0.6, 0.8, в случае x=0.4 присутствует как орторомбическая, так и ромбоэдрическая модификации. Методом XPS показано, что поверхность данных перовскитов обогащена карбонатом лантана La₂(CO₃)₃, а соотношение катионов Fe/Mn на поверхности не соответствует стехиометрическому (количество катионов Mn на поверхности заметно выше).

Проведено исследование термостабильности структуры образцов LaMn_{1-x}Fe_xO₃ методами высокотемпературной рентгенографии и ПЭМВР в вакууме и воздушной среде. Показано, что структура образцов стабильна до 900°С, как в воздушной среде, так и в вакууме. Все фазовые переходы, происходящие вследствие нагрева образцов, являются обратимыми. Методом ПЭМВР показано формирование локального упорядочения кристаллической структуры на поверхности перовскитной фазы. Зафиксированные в образцах с x = 0.6, 0.8 локальные упорядочения в виде включения ромбоэдрической модификации в орторомбическую матрицу, вероятно, являются областями с повышенным содержанием кислорода (по типу "фазы - зародыша"). Возможность формирования таких областей вполне обусловлена сегрегацией катионов Mn (эффект Яна-Теллера), однако данное предположение необходимо проверить с помощью квантово-химических методов.

Участие в реакции окисления метана не приводит к существенным изменения структуры и микроструктуры по данным РФА. Стоит отметить, что ромбоэдрическая модификация перовскита в образце с x = 0.4 сохраняется, что говорит о ее стабильности в окислительно-восстановительных условиях. По данным ПЭМВР в образцах после реакции наблюдается частичное упорядочение микроструктуры, заключающееся в формировании сверхпериодов в направлении плоскостей (100) и (101). Кроме того, как и в случае прокаливания образцов в вакууме, наблюдаются локальные упорядочения, имеющие 10 размеры порядка HM. Возможно, данные процессы связаны с перераспределением/упорядочением катионов Mn на поверхности перовскита, поскольку на рентгенограммах не зафиксированы соответствующие рефлексы.

10

РЕЦЕНЗИЯ

на итоговый отчет по молодежному поисковому проекту Герасимова Евгения Юрьевича: «Влияние реакционной среды на структурные изменения в твердых растворах

LaMn_{1-x}Fe_xO₃, синтезированных методом Pechini»

Представленная работа посвящена систематическому исследованию микроструктуры пероскитоподобных сложных оксидов в различных реакционных средах и высоких температурах с целью более детально понять природу каталитических свойств подобных материалов и изучить их стабильность в различных условиях.

Актуальность работы обусловлена необходимым с практической точки зрения поиском активных катализаторов высокотемпературных реакций окисления углеводородов, разложения закиси азота и др. Кроме того, представляет практический интерес использование изученных материалов в качестве катодов твердооксидных топливных элементов.

В проекте были поставлены следующие задачи:

- определить какие изменения происходят в кристаллической структуре и микроструктуре твердых растворов на основе замещенных манганитов/ферритов лантана под воздействием реакционных сред и высоких температур и

- выявить основные факторы, определяющие стабильность этих материалов в высокотемпературных окислительных процессах.

Работы были выполнены в полном объёме. В работе были впервые определены параметры структуры и микроструктуры твердых растворов $LaMn_{1-x}Fe_xO_3$ (x = 0.2-0.8), установлены закономерности формирования их фазового и поверхностного состава, изучена стабильность при высокой температуре в окислительных и восстановительных условиях. Представляет интерес и обнаруженный эффект локального упорядочения катионов Fe и Mn после того, как образцы были испытаны в реакции полного окисления метана.

Однако по тексту отчета возникают некоторые вопросы и замечания:

 В тексте отчета не приводятся и не обсуждаются результаты каталитических испытаний. Неясно, существует ли какая-либо зависимость каталитической активности от степени замещения Mn на Fe. Особенно интересно сравнить, наблюдается ли обнаруженная в работах Яковлевой И.С. и Надеева А.С. более высокая каталитическая активность ферритов лантана из области морфотропного фазового перехода.

- 2) Чем может быть обусловлено увеличение отношения поверхностных концентраций [C]/[La] от 1.3 до 3.1 при переходе от x = 0.4 к x = 0.6 (Таблица 2) по данным XPS?
- 3) Имеет ли локальное упорядочение катионов Fe и Mn, обнаруженное после каталитических испытаний образцов в реакции окисления метана, систематический характер? В отчете представлены данные только для двух образцов – x = 0.6 и 0.8.

Приведенные замечания и вопросы не влияют на значение работы. В большинстве случаев они являются дискуссионными или носят рекомендательный характер и, возможно, обусловлены краткостью изложения материала.

Иванов Д.В.

Рецензия на финальный отчет Герасимова Евгения Юрьевича по проекту «Влияние реакционной среды на структурные изменения в твердых растворах LaMn_{1-x}Fe_xO₃, синтезированных методом Pechini»

Автор использовал несколько методов, а именно, РФА, ПЭМВР, РФЭС для описания фазового состава, микроструктуры и поверхности в системе $LaMn_{1-x}Fe_xO_3$ в разных условиях, а именно, после температурной обработки до T=900°C на воздухе, в среде с низким парциальным давлением кислорода и после реакции окисления метана (окислительно-восстановительная среда, T=600°C).

Рентгеновская дифракция, проведенная in situ, показала термоустойчивость образцов на воздухе и в среде с низким парциальным давлением кислорода. Также было показано, что фазовый состав после температурных обработок в различных средах является одинаковым с незначительным изменением параметров решетки.

Согласно данным ПЭМВР обнаружено, что после обработки в кислороде с образцом ничего не происходит. Образцы после обработки при низком парциальном давлении кислорода и после реакции окисления метана имеют некоторые сходные изменения микроструктуры поверхности образцов. Автором обнаружено формирование двух типов неоднородностей:

1. областей (2-4 нм) с образованием сверхструктуры с удвоенным периодом, что автор предположительно связывает с упорядочением катионов Fe и Mn.

2. областей (~10 нм) ромбоэдрической модификации, свойственной перовскитам с высоким содержанием ионов Mn, в матрице орторомбической модификации, свойственной перовскитам с высоким содержанием ионов Fe (для составов с содержанием Fe x=0.6, 0.8).

Рецензент хотел бы высказать некоторые замечания.

- 1. Отчет написан не слишком четко. Возможно, это связано с ограничением по объему.
- 2. Хотелось бы, чтобы автор провел сравнение полученных структурных данных для твердых растворов с имеющимися хоть и в малом количестве в литературе.
- Хотелось бы, чтобы автор провел сравнение данных ПЭМВР с данными РФЭС, полученными для образцов после температурной обработки при низком парциальном давлении кислорода, т.к. после реакции образцы являются слишком зауглероженными.

В целом, рецензент положительно оценивает проделанную Герасимовым Е.Ю. работу. Полученные результаты соответствуют объявленным в заявке целям и задачам. Новизна полученных результатов обеспечивается тем, что твердые растворы LaMn_{1-x}Fe_xO₃ мало изучены со структурной точки зрения и тем, что данное исследование проводится с использованием современных методов исследования, таких как рентентгеновская дифракция *in situ* с применением синхротронного излучения и просвечивающей электронной микроскопии высокого разрешения.

Задачи проекта в целом выполнены.